(1/4x^2)=3

Simple and best practice solution for (1/4x^2)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4x^2)=3 equation:



(1/4x^2)=3
We move all terms to the left:
(1/4x^2)-(3)=0
Domain of the equation: 4x^2)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
1/4x^2-3=0
We multiply all the terms by the denominator
-3*4x^2+1=0
Wy multiply elements
-12x^2+1=0
a = -12; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-12)·1
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*-12}=\frac{0-4\sqrt{3}}{-24} =-\frac{4\sqrt{3}}{-24} =-\frac{\sqrt{3}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*-12}=\frac{0+4\sqrt{3}}{-24} =\frac{4\sqrt{3}}{-24} =\frac{\sqrt{3}}{-6} $

See similar equations:

| 4+12x-4=3x+5-3x | | 6n-2=2n+18 | | 5/2x-1/4=17 | | 9=4y(y-2) | | (35/24x)=3 | | 2x+5=3x+2(x+1) | | 6x+5=4(3x+1) | | -15+4k=k-2k | | 12x=12x+15 | | 12x=12x-15 | | √44–x=2–x | | 3=s-8 | | -3.5x=16.45 | | 7-7n+4n=29-94 | | 9x+9=5x+20 | | 17x^2+3x=0 | | 89=-43+x | | -3+2x=10×+21 | | 10x^2-34x-33=0 | | 30-2y-2y=10 | | 3+5x-4=5x+1 | | (2x-1)(x+2)^2=0 | | 97x-37x3=3x-15 | | -3/19+5y=7 | | 7x-11=x+31 | | -3.8-3x=4.0 | | 4(32-7)=65-3(4z-9) | | 3(2x-1)=8x+4-x | | 2x-7=7x2 | | 2/3z+1=1 | | 10p^2-18p+68=0 | | 3x+6=4(x-2)+1 |

Equations solver categories